The High-Shear, Low-CAPE SHERB parameter and its evaluation

Keith D. Sherburn

Department of Marine, Earth, and Atmospheric Sciences North Carolina State University

> Presented by: Seth Binau CR Southeast SOO Group Meeting August 31 2016

CIMMSE Collaboration for Improved Meteorology in the Mid-Atlantic and Southeast Academic, operational, and government partners working together to improve meteorology

HSLC

- "High" shear
 - 0-6 km layer
 - ≥ 35 knots (18 m/s)
- "Low" CAPE
 - Surface-based parcel
 - ≤ 500 J/kg

- High-shear, low-CAPE (*HSLC*) environments: second "key subclass" of severe weather (Schneider et al. 2006)
- Over half of significant or violent tornadoes (EF2+) associated with HSLC
- Relatively high number of missed events and false alarms
- Few operational *or* modeling studies

High-Shear, Low-CAPE (HSLC) Timeline

Early Literature (1990s)

- Shallow convection can produce tornadoes (Davies 1990)
- Tropical environments are HSLC (McCaul 1993); modeling studies produce mini-supercells (McCaul and Weisman 1996)
- Mesocyclone ~3 km deep, echo tops ~6 km (Kennedy et al. 1993)

Increasing Awareness (early 2000s)

- "Broken-S" signature introduced (McAvoy et al. 2000)
- Rapid tornadogenesis and other operational considerations (Cope 2004)
- Lightning rare in HSLC events due to lack of instability in mixed phase region (van den Broeke et al. 2005)

van den Broeke et al. (2005)

Paradigm Shift (Late 2000s)

Dean and Schneider (2008, 2012)

Operational Challenges (2010s)

- Shallow, transient tornadic vortices (Davis and Parker 2014*)
- High percentage of cool season and overnight severe (Sherburn and Parker 2014*)

*Low CAPE defined as SBCAPE ≤ 500 J kg⁻¹

Storm Prediction Center (SPC)

090327/2000 Surface to 6 km shear vector (kt)

- Difficult to forecast
- Often cool season or nocturnal
- Challenging warning operations
- Compressed
 convection
- Fast storm motions
- Transient structures
- Little to no lightning

Guyer and Dean (2010)

Top: 2003-2009 tornadoes with MLCAPE < 500 J/kg Bottom: Same, but EF2 and greater 14

 Current forecasting tools inadequately represent risk in low CAPE environments

Verification Data

- All HSLC significant severe reports and nulls across contiguous U.S. between 2006-2011
 - 2517 HSLC Significant Severe Reports (21% of all)
 - 302 tornadoes, 1579 wind reports, 636 hail reports
 - 1316 HSLC Nulls
- Also SPC Mesoanalysis
- Source of HSLC climatology
- Includes development dataset

Verification Methods

- TSS again utilized primarily
- Tested regionally

- HSLC reports occur in nearly every CWA
- Transition from tornado/wind threat in SE/MS Valley to wind/hail threat in Plains/Midwest

Total number of 2006-2011 HSLC significant severe

- Why not use conventional composite parameters?
 - CAPE
- How to approach creation of new parameters?
 - Statistical, eyes wide open approach
 - Focus on detecting favorable environments, not forecasting convection

- Product of lowand mid-level lapse rates and wind/shear magnitudes most skillful
- Why lapse rates?
- Which wind/shear magnitudes?

Launched approximately half an hour prior to significant wind event

SEVERE HAZARDS IN ENVIRONMENTS WITH REDUCED BUOYANCY PARAMETER (0-3 KM SHEAR VERSION): SHERBS3 = (0-3 km shear magnitude / 26 m s⁻¹) * (0-3 km lapse rate / 5.2 K km⁻¹) *

(700-500 mb lapse rate / 5.6 K km⁻¹)

(EFFECTIVE SHEAR VERSION): SHERBE = (Effective shear magnitude / 27 m s⁻¹) * (0-3 km lapse rate / 5.2 K km⁻¹) * (700-500 mb lapse rate / 5.6 K km⁻¹)

Development Dataset₂₆

Verification Dataset₂₇

NW

SW

Verification Dataset₂₉

Maximum TSS of Composite Parameters by Geographic Region

NW

SW

SHERBS3 Availability for Forecasters

- Real-time SHERB plots from NC State Real-time RAP – http://storms.meas.ncsu.edu/users/mdparker/rap Real-time NAM – http://storms.meas.ncsu.edu/users/mdparker/nam Real-time GFS – http://storms.meas.ncsu.edu/users/mdparker/gfs
- SPC SHERB mesoscale analysis plots Nationwide SHERBS3 – http://www.spc.noaa.gov/exper/mesoanalysis/s19/sherb3/sherb3.gif Nationwide SHERBE – http://www.spc.noaa.gov/exper/mesoanalysis/s19/sherbe/sherbe.gif
- SHERB is expected to be added to Bufkit in an upcoming release

How not to use the SHERB

- To forecast convection
 - Must be used with a confident forecast of convection
 - All data points used to develop the SHERB were associated with either severe or non-severe convection
 - Therefore, *cannot be used to forecast convection*!
- Where convection is not expected
 - Values potentially above guidance threshold where convection will not occur
- In isolation
 - Composite parameters (e.g., STP, VGP) still exhibit skill, though potentially at lower values than in high-CAPE environments

Credit Jonathan Blaes

Summary

- HSLC significant severe reports can occur in multiple regimes, and may occur at all times of the year across nearly entire U.S.
- SHERBS3 and/or SHERBE improves the forecasting skill in HSLC environments
- SHERBE is best overall parameter, regardless of environment, discriminating between significant severe reports and nulls

Primary Conclusions

- A product of lapse rates and shear is especially useful for identifying potentially severe HSLC environments
- The SHERBE is the best composite parameter in Southern Region at discriminating between significant severe reports and nulls, *regardless of environment.*

Additional Questions/Comments? kdsherbu@ncsu.edu

Case – April 2nd 2015 (Sherb ~1.0)

TDAY Z/SRM Loops

Oct 28 2015 NAM4km 850mb Winds (F21)

Oct 28 2015 NCAR Ensemble 850mb Winds (F21)

Oct 28 2015 NAM Fcst Sndg at KCMH

Oct 28 2015 ILN Sndg – Null (SHERB 0.51)

Jan 2012 - SHERB >1

Halloween 2013 – Analogs at F72

6.19791109/1800

11.19801028/0600

7.20031127/1800

12.20041207/0600

8. 19941105/1800

13. 19901203/1200

9.19931105/0600

14.19801017/1800

5.19951027/1200

15.20091002/1200

Halloween 2013 – SHERB Fcst Evolution

Scary Trick or Treat Sounding

Halloween 2013 – Storm Reports

Dec 23 2015 – NAM F39

Dec 23 2015 – SREF F39/F45

ensemble mean SHERBS3 (shaded) and probability of MU LI < +8 K (contours)

ensemble mean SHERBE (shoded) and probability of MUCAPE > 50 J/kg (contaurs)

Dec 23 2015 - NAM F39 (Cntl TN)

Dec 23 2015 - NAM F39 (Cntl OH)

DEC 23 2015

Nov 6th 2015 SWODY2

Nov 6th KILN Reflectivity

Nov 6th 2015 TCVG SRM

Nov 6th 2015 0-1km Shear Vector

Jun. 23, 2016: 2am – 3am

Jun. 23, 2016: 2am – 3am

Wind Diraction

